Angiotensin II increases expression of alpha1C subunit of L-type calcium channel through a reactive oxygen species and cAMP response element-binding protein-dependent pathway in HL-1 myocytes.
نویسندگان
چکیده
Angiotensin II (Ang II) is involved in the pathogenesis of atrial fibrillation (AF). L-type calcium channel (LCC) expression is altered in AF remodeling. We investigated whether Ang II modulates LCC current through transcriptional regulation, by using murine atrial HL-1 cells, which have a spontaneous calcium transient, and an in vivo rat model. Ang II increased LCC alpha1C subunit mRNA and protein levels and LCC current density, which resulted in an augmented calcium transient in atrial myocytes. An approximately 2-kb promoter region of LCC alpha1C subunit gene was cloned to the pGL3 luciferase vector. Ang II significantly increased promoter activity in a concentration- and time-dependent manner. Truncation and mutational analysis of the LCC alpha1C subunit gene promoter showed that cAMP response element (CRE) (-1853 to -1845) was an important cis element in Ang II-induced LCC alpha1C subunit gene expression. Transfection of dominant-negative CRE binding protein (CREB) (pCMV-CREBS133A) abolished the Ang II effect. Ang II (1 micromol/L, 2 hours) induced serine 133 phosphorylation of CREB and binding of CREB to CRE and increased LCC alpha1C subunit gene promoter activity through a protein kinase C/NADPH oxidase/reactive oxygen species pathway, which was blocked by the Ang II type 1 receptor blocker losartan and the antioxidant simvastatin. In the rat model, Ang II infusion increased LCC alpha1C subunit expression and serine 133 phosphorylation of CREB, which were attenuated by oral losartan and simvastatin. In summary, Ang II induced LCC alpha1C subunit expression via a protein kinase C-, reactive oxygen species-, and CREB-dependent pathway and was blocked by losartan and simvastatin.
منابع مشابه
Angiotensin II Increases Expression of 1C Subunit of L-Type Calcium Channel Through a Reactive Oxygen Species and cAMP Response Element–Binding Protein–Dependent Pathway in HL-1 Myocytes
Angiotensin II (Ang II) is involved in the pathogenesis of atrial fibrillation (AF). L-type calcium channel (LCC) expression is altered in AF remodeling. We investigated whether Ang II modulates LCC current through transcriptional regulation, by using murine atrial HL-1 cells, which have a spontaneous calcium transient, and an in vivo rat model. Ang II increased LCC 1C subunit mRNA and protein ...
متن کاملInteractions with PDZ proteins are required for L-type calcium channels to activate cAMP response element-binding protein-dependent gene expression.
After brief periods of heightened stimulation, calcium entry through L-type calcium channels leads to activation of the transcription factor cAMP response element-binding protein (CREB) and CRE-dependent transcription. Many of the details surrounding the mechanism by which L-type calcium channels are privileged in signaling to CREB, to the exclusion of other calcium entry pathways, has remained...
متن کاملcAMP-Dependent Regulation of Cardiac L-Type Ca2+ Channels Requires Membrane Targeting of PKA and Phosphorylation of Channel Subunits
The cardiac L-type Ca2+ channel is a textbook example of an ion channel regulated by protein phosphorylation; however, the molecular events that underlie its regulation remain unknown. Here, we report that in transiently transfected HEK293 cells expressing L-type channels, elevations in cAMP resulted in phosphorylation of the alpha1C and beta2a channel subunits and increases in channel activity...
متن کاملL-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells.
Opening of dihydropyridine-sensitive voltage-dependent L-type Ca2+-channels (LTCCs) represents the final common pathway for insulin secretion in pancreatic beta-cells and related cell lines. In insulin-secreting cells their exact subunit composition is unknown. We therefore investigated the subunit structure of (+)-[3H]isradipine-labeled LTCCs in insulin-secreting RINm5F cells. Using subunit-sp...
متن کاملThyroid hormone inhibits vascular remodeling through suppression of cAMP response element binding protein activity.
OBJECTIVE Although accumulating evidences suggest that impaired thyroid function is a risk for ischemic heart disease, the molecular mechanism of anti-atherosclerotic effects of thyroid hormone is poorly defined. We examined whether thyroid hormone affects signaling pathway of angiotensin II (Ang II), which is critically involved in a broad aspect of cardiovascular disease process. METHODS AN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 100 10 شماره
صفحات -
تاریخ انتشار 2007